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Falsification Testing of Instrumental Variables Methods for Comparative Effectiveness Research 
Steven D. Pizer, PhD, Associate Professor of Health Economics, Northeastern University 
 
Abstract 
Objectives: To demonstrate how falsification tests can be used to evaluate instrumental variables 
methods that can be used to investigate a wide variety of comparative effectiveness research questions. 
Study Design: Brief conceptual review of instrumental variables and falsification testing principles and 
techniques accompanied by an empirical application. Sample Stata code related to the empirical 
application is provided in the appendix. 
Empirical Application: Comparative long-term risks of sulfonylureas and thiazolidinediones for 
management of type 2 diabetes. Outcomes include mortality and hospitalization for an ambulatory care 
sensitive condition. Prescribing pattern variations are used as instrumental variables. 
Conclusions: Falsification testing is an easily computed and powerful way to evaluate the validity of the 
key assumption underlying instrumental variables analysis. If falsification tests are used, instrumental 
variables techniques can help answer a multitude of important clinical questions. 
Key Words: falsification testing; instrumental variables; comparative effectiveness research; practice 
pattern variation. 
 
Introduction 

Falsification testing is an old idea that has great potential as a method for evaluating the internal 
validity of comparative effectiveness research (CER) studies. Though rarely identified as such, 
falsification tests are familiar to most researchers, as they are a routine, almost automatic component of 
reporting of randomized controlled trial (RCT) results.  Falsification testing of observational studies 
requires more planning in advance, but is not much more difficult to perform than for RCTs. Given the 
growing importance of observational studies and instrumental variables methods in CER, falsification 
testing can play a vital role in improving the reliability and impact of this research. 

To understand falsification testing, consider the table of sample means by treatment and control 
group included in most reporting of RCT results. What purpose does this serve? Our expectation is that 
the sample means will not be significantly different between groups because group assignment was 
intended to be random. Random assignment is the “identifying assumption” of RCTs because 
randomization permits us to infer causal effects of treatment. If the sample means differ by group, the 
identifying assumption has been falsified and we have reason to doubt the internal validity of the trial. 
That is, a table of means by group is a falsification test of an RCTs central assumption.  

As I will show, similar falsification tests can be implemented for observational studies, which are 
becoming an increasingly important source of clinical evidence. Wider adoption of electronic medical 
records and substantial new investments ($3 billion in research and infrastructure between 2013 and 
2019) by the Patient-Centered Outcomes Research Institute (PCORI) [1] are increasing capacity to 
conduct observational, comparative effectiveness and patient-centered outcomes research.  A recent 
analysis of responses to the National Ambulatory Medical Care Survey showed that the percentage of all 
physicians who had adopted a basic electronic medical record increased from 25.8% in 2010 to 38.2% in 
2012 [2].  These rapid changes in technology and research resources raise the prospect of large 
observational studies based on clinical data with vastly richer detail than what has been available in the 
past from administrative or claims-based records. 

This emerging “big data” environment holds promise to extend the reach of clinical and health 
services research to include the study of rare events, heterogeneous treatment effects, long-term 
outcomes, and other topics that are difficult or impossible to study with RCTs [3,4]. Such trials typically 
involve numbers of subjects in the hundreds, limiting comparisons to a few treatment options and 
making patient subgroup comparisons difficult or impossible.  In addition, external validity is constrained 
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by recruitment that frequently excludes the most complex or severely ill patients as well as treatment 
that is conducted in academic medical centers with research staff supplementing clinical staff.  In 
contrast, observational studies can efficiently exploit electronic medical records and administrative 
databases containing information on tens or hundreds of thousands of patients of all types, treated in a 
wide variety of clinical settings and followed for many years. 

Despite these advantages, a key challenge facing observational CER is evaluating the validity of 
causal inference [5,6,7]. Fortunately, important technical strides have been made in design and analytic 
methods to increase the internal validity of observational studies despite a lack of purposeful, explicit 
randomization.  Depending on the source and strength of treatment variation in observational studies, 
different statistical methods may be appropriate.  For example, if the study is small enough that it is 
practical to collect data on every potentially confounding variable, propensity score methods can ensure 
balance of observed variables between treatment and comparison groups, revealing the causal effect of 
treatment.  On the other hand, if the study is too large for practical collection of important variables 
that might be unavailable in clinical or administrative data, risk-adjusted or propensity score estimates 
are likely to be biased and quasi-experimental methods like instrumental variables (IV) probably will be 
more appropriate [8].1 

This article reviews the fundamental concepts underlying IV estimation and falsification testing, 
and then demonstrates the steps involved using a specific example comparing the long-term risks 
associated with alternative oral medications used to manage type 2 diabetes [9]. Sample STATA code to 
implement these steps is provided in the Appendix. 
 
Fundamental Concepts 
What Are Instrumental Variables and Why Use IV for CER? 

The use of IV methods in health research has been growing rapidly. Garabedian and colleagues 
performed a systematic search for comparative effectiveness studies relying on IV [10]. They found 187 
studies published between 1992 and 2011, with the frequency of publication increasing rapidly—from 
fewer than two per year before 1998 to 34 in 2011 alone [10].  

The increasing popularity of IV among comparative effectiveness researchers is leading to 
intensifying debate in the literature about the strengths and weaknesses of the approach, with different 
authors reaching seemingly conflicting conclusions. For example, Garabedian and colleagues conclude, 
“Although no observational method can completely eliminate confounding, we recommend against 
treating instrumental variable analysis as a solution to the inherent biases in observational CER studies” 
[10]. In contrast, Glymour and colleagues conclude, “Given that it will often be nearly free to conduct IV 
analyses with secondary data, they may prove extremely valuable in many research areas . . . [however 
if IV] is uncritically adopted into the epidemiologic toolbox, without aggressive evaluations of the validity 
of the design in each case, it may generate a host of false or misleading findings” [11]. 

To understand how instrumental variables methods work, it is helpful to start by returning again 
to why causal inference is valid in a randomized clinical trial. As illustrated in Figure 1A, participants in 
an RCT are randomly assigned between treatment and control groups. Because this sorting is 
accomplished by a mechanism (flip of a coin) that is uncorrelated with any patient or provider 
characteristics, we expect the mean values of all these variables (whether observed or not) to be the 
same in both groups. Furthermore, because the coin flip has no direct effect on the outcome, any mean 
difference observed at the end of the trial must be due to treatment itself [8]. 
 Causal inference in observational studies is more complex, as illustrated in Figure 1B. Sorting 
into treatment and comparison groups is not determined by one, random factor; instead, numerous 

                                                           
1
 Quasi-experimental methods include interrupted time series, regression discontinuity, instrumental variables, 

and many other designs. This article focuses on IV, although the principles apply to all of these designs. 
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patient and provider characteristics, both observed and unobserved, can play a role. Many of these 
variables may also directly affect the outcome, resulting in potential confounding (illustrated by the 
dotted lines in the Figure). For example, sicker patients are more likely to choose more aggressive 
treatments, leading unadjusted comparisons to suggest that aggressive treatments are associated with 
poor outcomes [8].  

The standard method of reducing this confounding is to try to control for individual 
characteristics that might affect outcome risk, using a regression model to statistically adjust for 
between group differences in risk factors [12]. Propensity score matching is a variant on this approach, 
whereby propensity scores are calculated using a long list of variables (including interactions and 
transformations) that might be related to the outcome [13,14,15]. Members of the treatment group are 
matched by propensity score with members of the comparison group through a process ensuring that 
observable characteristics are balanced between groups.  

Unfortunately, neither standard risk adjustment nor propensity score matching can ensure that 
unobserved patient and provider characteristics will be balanced or adjusted for in the analysis. In Figure 
1B, one such unobservable confounder is level of self-care skill. Patients with more skills may seek more 
aggressive treatment, having more confidence that they will be able to manage any additional 
complexity that may be involved. Because such patients are likely to have better outcomes than those 
with less well developed skills, failing to adjust for unobserved skill differences could lead to an 
erroneous finding of a beneficial treatment effect.  

An IV approach can potentially solve this problem. Imagine a situation where the flip of a coin 
does not exclusively determine assignment to treatment like it does in an RCT, but it has a strong 
influence. An IV model statistically isolates the component of variation in treatment that can be traced 
back to the coin flip and then examines differences in outcomes that are due to that component alone, 
separated from observed and unobserved potential confounders [8]. It is like finding a little RCT inside a 
lot of observational data.  

Of course, coin flips like this are rarely found in real data, so the researcher must find another 
variable (an instrument) that has the experimental properties of the coin flip: it must be strongly related 
to sorting into treatment, and it must not be related to the outcome, except through its effect on 
treatment.2 The first property (instrument strength) is illustrated in Figure 1B by the solid arrow 
connecting the IV to sorting. The second property, known as the exclusion restriction, is illustrated in the 
Figure by the lack of any arrow connecting the IV directly to the outcome. In CER, a promising and 
frequently used IV is geographic, facility-level, or provider-level practice pattern differences. In 
Garabedian’s review, fully 46% of identified IV studies featured this type of instrument. Practice pattern 
instruments can be easily constructed and applied to an enormous variety of CER questions, so it is vital 
to be able to evaluate the validity of this approach.  

Instrument strength is straightforward to test [17]. If the instrument is not strongly enough 
related to sorting into treatment, IV estimates will be highly imprecise and can be biased [18]. The 
exclusion restriction is more difficult to test and is often left to theoretical argument and subject matter 
expertise [10,16,19,20]. Naturally, this reduces confidence in IV methods [10]. The contribution of 
falsification tests is that they help evaluate the validity of the exclusion restriction, thereby identifying 
cases where the instrument is confounded and strengthening confidence in cases where no evidence of 
confounding is revealed. 

IV models in CER are implemented and tested by translating the diagram in Figure 1B into two 
equations for estimation. The first explains variation in treatment as a function of patient characteristics, 

                                                           
2
 Some authors make a distinction among non-treatment pathways through which a potential instrument might be 

associated with the outcome. The instrument might have a direct effect, or it might be partly caused by another 
variable that also affects the outcome (e.g., [16]). For our purposes, we do not need to make this distinction. 
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provider characteristics, instrumental variables, and unobserved factors (denoted by u). The second 
explains variation in outcomes as a function of patient characteristics, provider characteristics, receipt of 
treatment, and unobserved factors (denoted by v), some of which might be the same as in the first 
equation. 

(1) Treatment = f(patient characteristics, provider characteristics, IV) + u 
(2) Outcome = g(patient characteristics, provider characteristics, Treatment) + v 

These equations can be estimated simultaneously or sequentially, but naively estimating the outcome 
equation (Equation 2) without accounting for the treatment equation (Equation 1) will lead to bias if 
there are unobservable factors that influence both treatment and outcomes. For example, if the 
unobserved confounder is the patient’s self-care skill as mentioned above, naïve estimation of Equation 
(2) will falsely attribute some of the effect of self-care skill to the treatment. A practice pattern based IV 
model could solve this problem by isolating for analysis the component of treatment variation that is 
due to practice patterns and eliminating the component that is due to individual characteristics like self-
care skill. 
How Can IV Go Wrong? 
 In addition to the problem of weak instruments, IV estimates can be biased or misleading 
because the exclusion restriction is invalid or because the IV estimates are not generalizable to the 
population of interest. If the exclusion restriction is invalid, the IV is correlated with the outcome 
through some pathway other than treatment. For example, if practice patterns for the treatment in 
question are related to diffusion of new knowledge, receipt of the treatment may be correlated with 
receipt of other services that are sensitive to new knowledge and also have effects on the outcome. In 
this case, the IV estimate would falsely attribute some of the beneficial effects of other treatment 
improvements to the treatment under study.  
 IV estimates can be misleading even if the instrument is strong and the exclusion restriction is 
valid. This can occur because IV estimates measure outcome differences that can be attributed to 
treatment variations caused by the instrument. If the instrument only affects a small sub-population, the 
IV estimates may not be generalizable to a larger population. In other words, the IV estimate measures a 
local average treatment effect (LATE) [21,22]. This issue is analogous to the external validity problem 
faced by RCTs [23]. 
How Does a Falsification Test Help? 
 The idea of falsification testing dates back at least to Popper [24], but has been the subject of 
more attention recently in health outcomes research because of the increasing opportunities for 
observational studies discussed above [11,16,25]. In IV CER studies, a falsification test of the exclusion 
restriction will typically involve identifying a dependent variable or a population that ought not to be 
affected by the treatment under study, but would be affected by potential confounders that might be 
correlated with the proposed IV and the outcome.  

For example, consider a study comparing stroke outcomes among patients receiving alternative 
anticoagulation therapies for atrial fibrillation. Garabedian and colleagues (2014)[10] argue that practice 
pattern IV studies are often vulnerable to bias because they fail to control for one or more of the 
following patient characteristics: race, education, income, age, insurance status, health status, and 
health behaviors. If health behaviors are correlated with anticoagulant prescribing patterns and the 
outcomes under study, this could indeed be a problem. However, patients without atrial fibrillation but 
who have carotid artery disease are also at elevated risk for stroke and should not be treated with 
anticoagulants. If anticoagulant prescribing patterns are unrelated to stroke outcomes for carotid 
disease patients, then it is less likely that confounding health behaviors are correlated with 
anticoagulant prescribing patterns. Instead of using an alternative population (those with carotid 
disease), another option would be to choose an alternative outcome that should not be affected by the 
treatment but would be affected by health behaviors (e.g., incident lung cancer). 
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More formally, an ideal falsification test for the exclusion restriction would estimate an 
alternative specification for Equation (2) that excludes treatment but includes the practice pattern IV.  

(3) Outcome = g(patient characteristics, provider characteristics, IV) + v 
This equation is estimated for an alternative population or an alternative outcome, selected to be as 
close as possible to the outcomes and populations of interest without being subject to the treatment 
under study. If the IV has no significant estimated effect on the outcome in Equation (3) then the 
exclusion restriction is not rejected. Note that multiple tests are possible for the same application, so 
prespecification is valuable to avoid selective reporting [25]. 
 
Conducting and Testing a Real IV Analysis 
 To make the above conceptual discussion more concrete, consider a recent analysis conducted 
by Prentice and colleagues [9]. The investigators set out to compare the effects on long-term outcomes 
of two classes of oral medications used as second-line agents to control type 2 diabetes: sulfonylureas 
(SU), like glyburide and glipizide, and thiazolidinediones (TZD), like rosiglitazone and pioglitazone. SUs 
are well-established, inexpensive and often used as first and second line agents in diabetes treatment 
[26,27]. SU use increases the risk for hypoglycemia and concerns about their potential association with 
cardiovascular disease have been present since the 1970s [28]. Several recent studies have reported an 
increased risk of cardiovascular disease and death among patients who started on an SU compared to 
metformin (MET) as initial treatment of diabetes [29,30]. TZDs have also been associated with adverse 
events, including cardiovascular outcomes (MI and CHF), osteoporosis and bladder cancer [31-33]. To 
compare the effectiveness and risks of these two medication classes, Prentice and colleagues applied a 
practice pattern IV technique to a large administrative database combining data elements from the 
Veterans Health Administration (VHA) and Medicare. 
 The outcomes chosen for study were readily computable from the administrative data and 
included all-cause mortality, hospital admission (VHA or Medicare) for any of 13 ambulatory care 
sensitive conditions (ACSC) as defined by the Agency for Healthcare Research and Quality [34,35] and 
AMI or stroke. The VA Vital Status File which determines the date of death from VA, Medicare, and 
Social Security Administration data was used to determine all-cause mortality [36]. ACSC hospitalizations 
are hypothesized to be preventable with high quality outpatient care and include several diabetes and 
cardiovascular complications such as uncontrolled diabetes, short and long-term complications of 
diabetes, or congestive heart failure [34,35]. AMI definitions were based on Petersen et al. (1999) and 
Kyota et al. (2004) and stroke definitions were based on Reker et al. (2002) [37-39]. Due to the overall 
scarcity of the stroke and AMI outcomes in the data, models that predicted these outcomes separately 
were unstable. Consequently, AMI and stroke were combined into one outcome. The modeled outcome 
was the amount of time between the initiation date of SU or TZD and the earliest date of any of the 
three outcomes, censoring on the date an individual started a third drug or the end of the study period. 
Step One: Choose and Specify IV 
 When considering a quasi-experimental design, it is vital to identify a source of variation in 
treatment that is arbitrary or random with respect to potentially confounding variables. This source of 
variation could be a policy change or boundary (as in interrupted time series or regression discontinuity) 
or it could be practice variation or program location3 (as in many IV studies). In Figure 1B the source of 
arbitrary or random variation in treatment that is only related to the outcome through its effect on 
treatment is labeled the instrumental variable. The choice and specification of the IV should be 
determined through consideration of institutional factors and the causal diagram in Figure 1B. 

                                                           
3
 Falsification tests can also be useful when program location is used as an instrument. See Edwards et al 

(2014[46]) for a recent example.  
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The VHA is the largest integrated health care system in the United States serving over 8.3 million 
patients each year and spending nearly 4 billion dollars on prescriptions in 2009 [40,41].  There is 
significant physician-prescribing practice variation [42,43] and VHA patients are assigned to their 
primary care physicians by variable and often arbitrary methods [44,45]. Consequently, provider-level 
prescribing variation is unlikely to be related to the observable or unobservable patient characteristics 
shown in Figure 1B and identified by Garabedian and colleagues. This is a promising start for a potential 
instrument.  
 Prentice and colleagues defined treatment as initiating either SU or TZD as a second 
hypoglycemic agent after experience with metformin, noting that most patients who initiated one or the 
other remained on it two years later [Prentice et al]. They defined their instrument as the proportion of 
second line agent prescriptions (SU or TZD) written for SU by each provider (for all of their patients) 
during the year prior to the patient’s initiation date for their second line agent [9]. Providers and 
patients were paired based on that initiation date to minimize confounding that could occur if patients 
later switched providers. If a provider had < 10 patient-level second line agent prescriptions during the 
prior year (70% of the time), the rate at the community based outpatient clinic (CBOC) or VHA medical 
center (VAMC) where the provider practiced was used.  

To check whether this instrument was random with respect to patient characteristics, Prentice 
and colleagues performed a simple falsification test by comparing sample means between SU and TZD 
initiators (columns 1 and 2 of Table 1), and then between those paired with high vs. low SU prescribers 
(columns 3 and 4 of Table 1). Although there were some notable differences by initiation group—for 
example SU initiators were more likely to have baseline HbA1c > 9—these differences were no longer 
evident when patients were grouped by provider prescribing pattern (Table 1), indicating that the first 
falsification test did not reject the proposed instrument. 
Step Two: Choose and Specify Control Variables 
 Once an IV has been chosen, consider other potential confounders that might be correlated with 
the IV as well as the outcome. In the practice pattern example, patient characteristics are not expected 
to be correlated with the IV for institutional reasons and Table 1 demonstrates that this appears to be 
true in the data. In contrast, as shown in Figure 1B, provider and facility characteristics like the quality of 
care delivered might be correlated with practice patterns and might also affect the outcome. If possible, 
this danger can be mitigated by including provider and facility quality measures as control variables in 
the outcome equation. Although they are less likely to be confounders, it is a good idea to include 
patient characteristics as control variables as well because they will improve the precision of estimates. 
 Prentice and colleagues specified three process quality measures to control for potentially 
confounding provider and facility characteristics: percent of HbA1c labs > 9% [47,48], percent of blood 
pressure readings >140/90 mm Hg [49], and percent of LDL cholesterol labs > 100 mg/dL [49]. These 
variables were computed at the same provider, CBOC or VAMC level and time periods as the IV 
prescribing rate. Sample means for these variables are shown in Table 1, which also demonstrates that 
the IV appears to balance these factors as well. 
Step Three: Choose Falsification Sample and Outcomes 
 Once the IV and control variables have been specified it is tempting to proceed with the study, 
but a little more advance planning is essential to support falsification testing. If the instrument is valid it 
should affect the outcome only through treatment. Therefore, it should have no effect on outcomes that 
are not in the treatment pathway. Such outcomes could be the result of unrelated disease processes 
affecting the study population or they could be study outcomes experienced by those not subject to the 
study treatment. In either case, investigators will usually have to specify the necessary data when the 
study protocol is approved. An ideal falsification sample would not be exposed to the study treatment, 
but would be exposed to all of the potential confounders that might be correlated with the instrument 
and the outcome, like provider- or facility-level quality of care. 
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 In the diabetes study, Prentice and colleagues specified two populations for falsification testing 
that were closely related to the study population but not subject to treatment by SU or TZD [9]. First, 
they selected all individuals who received a new prescription of MET and followed them for one year. 
They assumed these patients were being treated with MET as their first line agent and their disease had 
not progressed to the point of needing a second line agent in that time period. Consequently, the SU 
prescribing rate should not affect the outcomes for these individuals. They used provider SU prescribing 
rates to predict all-cause mortality, ACSC hospitalization, and stroke or AMI controlling for all the 
demographics, comorbidities and process quality variables. Since no individuals in this population were 
on SU, no treatment equation was estimated and the falsification test was performed by including the 
instrument in an alternative specification of the outcome equation.  

Using the same analyses, the second falsification test used a sample of individuals who initiated 
insulin after MET and took no other diabetes drugs during the study period. Again, the conceptual 
model indicated that SU prescribing rates should not affect the outcomes for these individuals if there 
were no important instrument-outcome confounders. An appealing feature of this pair of falsification 
tests is that the falsification populations bracket the study population in terms of disease severity, with 
MET only patients the least severe and insulin patients the most severe. If the falsification tests support 
the exclusion restriction, it is difficult to imagine why it would fail only among those with moderate 
disease. 
Step Four: Estimate IV Model 
 Linear IV models can be estimated easily in most statistical packages, but health outcomes of 
interest are often more appropriately estimated by nonlinear methods like logistic regression or survival 
models. Nonlinear IV models can also be estimated, but methods often involve specialized 
programming, making implementation more difficult. Two-stage residual inclusion is a widely applicable 
and easily implemented approach that does not involve specialized programming beyond the use of 
standard commands in a statistical package like STATA [8,50]. The first stage treatment equation 
(Equation 1) is estimated by logistic or probit regression, and the first stage residual is calculated as uhat 
= Treatment – fhat(patient characteristics, provider characteristics, IV), where fhat(.) is the estimated 
function f(.) and gives the predicted probability of treatment. The second stage outcome equation 
(Equation 4) is estimated next, after including the estimated residual, uhat, as a covariate. This 
additional variable controls for possible correlation between unobservable factors affecting treatment 
(u) and unobservable factors affecting the outcome (v).  

 (4) Outcome = g(patient characteristics, provider characteristics, Treatment, uhat) + v 
The first-stage residual term, uhat, is an estimated quantity, but statistical software will not 
automatically account for the increased uncertainty that implies, so standard errors for estimates from 
Equation (4) must be recalculated by bootstrapping [51].  
 In the diabetes study, Prentice and colleagues used a probit model to estimate their treatment 
equation and Cox models including the first-stage residual to estimate their outcome equations [9]. The 
strength of their practice pattern IV is demonstrated by the size and precision of its estimated effect in 
the treatment equation (Table 2). The IV estimates of treatment effects are expressed as hazard ratios in 
Table 3, indicating that SU prescribing significantly increased the risk of mortality and ACSC 
hospitalization relative to TZD prescribing, but did not have a significant effect on the risk of stroke or 
heart attack. Since SUs are widely used and considered safe while TZDs are used less frequently and 
typically considered more risky, these are surprising and potentially important results. 
Step Five: Compute Falsification Test 
 The falsification tests specified above can be computed by estimating Equation (3) with either 
the falsification sample and the study outcomes or with the study sample and the falsification outcomes. 
The exclusion restriction is rejected if the IV in Equation (3) has a statistically significant effect on the 
outcome. No bootstrapping is necessary because none of the covariates in Equation (3) are estimated. 
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Although presenting multiple falsification tests is better than only one, it is not possible to prove 
conclusively that there is no confounding. As with other aspects of analytic design, specification of 
falsification tests at the proposal stage of a project helps to allay concerns that investigators might be 
presenting only the results that support their design. 

In the diabetes study, Prentice and colleagues found no significant effects of the IV on any of the 
outcomes in either falsification sample (Table 4). These results are consistent with validity of the IV and 
improve confidence in the IV estimates, but it is always possible that a different test specification or a 
larger sample could detect a problem.  

It is also possible that an instrument that is not rejected for one population will be rejected for 
another, closely related population. Bartel, Chan and Kim (2014)[52] use day of the week admitted to 
the hospital as an instrument for length of stay when measuring the effect of length of stay on 
rehospitalization and other outcomes for patients with heart failure. For institutional or personal 
preference reasons, patients admitted on Monday or Tuesday tend to have shorter lengths of stay than 
those admitted on Thursday or Friday (who are more likely to stay over the weekend). Bartel, Chan and 
Kim tabulate patient characteristics by their instrument to try to falsify the assumption that admission 
day is uncorrelated with observed and unobserved health status and they find that the instrument is not 
rejected for patients with the most severe disease, but it is rejected for less severe cases. This makes 
sense because severe cases might have to respond to symptoms immediately, making admission day 
effectively random, but less severe cases might choose their admission day with a desired length of stay 
in mind. The investigators appropriately proceed to use the instrument only for the population 
supported by the falsification test [52]. 
 
Conclusion 
 Falsification testing is a fundamental scientific tool that is particularly useful when considering 
an instrumental variables approach to an observational study. With proper advance planning, 
falsification tests can be easily applied to potential instruments, with the results either rejecting the 
instruments or increasing confidence in them. Causal inference from an instrumental variables 
observational study will never be as strong as it could be from a well-executed randomized clinical trial, 
but, if testing supports the strength and validity of the instruments, these studies can shed light on a 
multitude of important clinical questions that would otherwise be too confounded to investigate with 
other observational study designs. 
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Appendix: Annotated STATA code 
 
Data Organization and Variable Definitions 
 Start by defining a baseline period, an index date, and an outcome period. The index date 
separates the baseline period from the outcome period and indicates when the patient received either 
the study treatment or a comparator. Data in the baseline period should be organized to have each 
observation represent a patient-event (either a prescription, a lab value or an outcome). Data in the 
outcome period should be organized with each observation representing a patient. The following 
variables are used in the code below. 
 
Txrx: Indicator variable equal to 1 if baseline prescription event is study treatment and zero otherwise. 
Allrx: Indicator variable equal to 1 if baseline event is a prescription and zero otherwise. 
provider: Unique provider ID. 
facility: Unique facility ID. 
year: Year of index date. 
treatment: Indicator variable equal to 1 if index treatment is study treatment and zero otherwise. 
outcomedays: Number of days from index date to first outcome. 
censored: Number of days from index date to censoring. 
 
Step One: Choose and Specify IV 
 In practice pattern IV applications, the investigator often will be computing a provider- or 
facility-level mean in the baseline period, excluding the particular patient whose record is being 
processed. Thus, the patient’s value or values are excluded from both the numerator and denominator 
of the rate used to predict his or her treatment. This can be done efficiently by calculating the overall 
numerator and overall denominator for all records in the baseline data and then subtracting the patient-
specific values on each line before combining to form the rate. The rate is then saved as a patient-level 
variable and added to the outcome data. 
 egen numer1 = sum(Txrx), by(provider) 
 egen denom1 = sum(Allrx), by(provider) 
 numer2 = numer1 – Txrx 
 denom2 = denom1 – Allrx  
 IVrate = numer2/denom2  
 
Step Two: Choose and Specify Control Variables 
 Control variables typically include standard demographics, risk-adjustment variables (based on 
diagnosis codes), and baseline medications and lab values if available. If provider-level process quality 
variables are included, they can be constructed excluding the individual patient using the same coding 
technique as Step One. 
 
Step Three: Choose Falsification Sample and Outcomes 
 The falsification sample should ideally include the same control variables as the study sample. 
Falsification outcomes should be as close as possible to study outcomes without being affected by the 
study treatment. 
 
Step Four: Estimate IV Model 
 The IV model is estimated on the outcome period data, using two equations bootstrapped 
together. The first is the treatment equation, which can be estimated by logistic regression or probit if 
treatment is binary. Results of this regression are used to calculate the predicted residual, which is 
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included in the outcome equation. The following treatment equation example includes fixed effects for 
facilities and years: 
 xi: probit treatment IVrate {control variables} i.facility i.year 
 predict Txprob 
 Txres = treatment – Txprob  
The following outcome equation example estimates a Cox proportional hazards model including fixed 
effects for years and random effects for facilities: 
 stset outcomedays, failure(censored) 
 xi: stcox treatment Txres {control variables} i.year, shared(facility)  
 
Step Five: Compute Falsification Test 
 The falsification test is computed using an alternative formulation of the outcome equation. In 
this example, a falsification sample is used with the study outcome. If the IVrate variable has a 
statistically significant effect on the outcome, the instrument is rejected. 
 stset outcomedays, failure(censored) 
 xi: stcox IVrate {control variables} i.year, shared(facility) 
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Figures and Tables 
 

Figure 1A. Causal Inference in a Randomized Controlled Trial 

 
Figure 1B. Causal Inference in an Observational Study 

 
Source: Adapted from Pizer (2009) [8] 
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Table 1: Selected sample means or percentages for patients starting SU or TZD as second agent and 
patients assigned to above and below-median SU prescribing providers 

 Individual Treatment  Provider SU prescribing  
 
Demographics 

Start SU 
n=73726 

Start TZD 
n=7210 

Top 50% SUa 
n=40483 

Bottom 50% SUa 
n=40453 

Age (y), mean  69.1b  70.1 69.2 69.2 
Male 98 98 98 98 
White  88 89 90 87 
Diabetes management     
HbA1c >=9 9 5 8 8 
Retinopathy complications 14 16 14 14 

Nephropathy complications 10 12 10 10 
Neuropathy complications 19 22 20 19 
Cerebrovascular complications  13 14 13 13 

Cardiovascular complications (some) 24 28 25 25 
Cardiovascular complications (severe) 26 23 25 25 

Peripheral vascular complications 14 16 14 14 
Metabolic complications 1 1 1 1 
Cardiovascular comorbidities     

BMI obese 41 39 41 41 
Congestive heart failure 13 12 13 13 
Cardiac arrhythmias 21 21 21 21 
Valvular disease 10 11 9 10 
Hypertension 84 84 84 84 
Pulmonary circulatory disorder 1 1 1 1 
Chronic pulmonary disease 23 21 24 23 
Provider Process Quality Variables     
Provider % HbA1c > 9 in baseline 
period, mean  10  

 
10  

 
10 

 
10 

Provider BP % > 140 or >90 in baseline 
period, mean  

41  42  41 41 

Provider LDL % > 100 in baseline 
period, mean  

38  40  38 38 

Outcomes     
ACSC hospitalization 18 13 18 17 
All-cause mortality 10 7 10 9 
Stroke or AMI 5 4 5 5 
a These two columns show descriptive statistics of patients assigned to providers who prescribe SU 
below and above the sample median. 
b For ease of presentation, percentages are presented unless otherwise noted.  
Excerpted from Prentice et al. (In Press) [9] Table 2.  
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Table 2. Selected First-stage Probit Results: Receiving SU Compared to TZD (n=80,936)  

 Coefficient P<|t| 95% Confidence Interval 

Instrument     
Provider prescribing history 2.215 0.000 2.098 2.332 

Model also includes baseline demographics, Elixhauser comorbidities, Young severity index, HbA1c, BMI, 
microalbumin, serum creatinine, provider quality controls, Veterans Affairs Medical Center fixed effects 
and year effects that are not shown.   
Excerpted from Prentice et al (In Press) [9] Table 3 

 

Table 3. Second Stage Cox Proportional Hazard Models: Effect of SU on Mortality, ACSC hospitalization  
and Cardiovascular Outcomes (n=80,936)  

 Hazard Ratio P<|t| 95% Confidence Interval 

All-cause mortality 1.50 0.014 1.09 2.09 
ACSC hospitalization 1.68 <0.001 1.31 2.15 
Stroke or heart attack 1.15 0.457 0.80 1.66 

Models include baseline demographics, Elixhauser comorbidities, Young severity index, HbA1c, BMI, 
microalbumin, serum creatinine, provider quality controls, year fixed effects and Veterans Affairs 
Medical Center random effects.  
Excerpted from Prentice et al (In Press) [9] Table 4. 
 
 

Table 4. Falsification Test: Effect of SU Prescribing Rate on Mortality, ACSC hospitalization and 
Cardiovascular Outcomes 

 Hazard Ratio P<|t| 95% Confidence Interval 

MET only sample (n=76,860)    

All-cause mortality 1.30 0.115 0.94 1.79 
ACSC hospitalization 1.23 0.149 0.93 1.62 
Stroke or heart attack 1.11 0.657 0.70 1.77 
MET and Insulin sample (n=4,015)     
Mortality 1.30 0.427 0.68 2.52 
ACSC hospitalizationa 0.81 0.425 0.47 1.37 

Models include baseline demographics, Elixhauser comorbidities, Young severity index, HbA1c, BMI, 
microalbumin, serum creatinine, provider quality controls, year fixed effects and Veterans Affairs 
Medical Center random effects.  
aThe stroke and heart attack model did not converge in the MET and insulin sample due to small sample 
sizes.  
Excerpted from Prentice et al (In Press) [9] Table 5. 

 


